

MRS Spring meeting San Francisco April 2014 Symposium A. Film-silicon science and technology

(HE CODA 1E16

Silicon-based thin films and 0–3 composites with very low thermal conductivity

Hartmut S. Leipner, Peter Werner, Katrin Bertram, Markus Trutschel, Bodo Fuhrmann, Alexander Tonkikh

Martin-Luther-Universität Halle–Wittenberg Max-Planck-Institut für Mikrostrukturphysik Halle

Control of thermoelectric properties

Thermoelectric figure of merit *ZT* for anisotropic Bi₂Te₃ layers of the thickness *t* [Hicks, Dresselhaus 1993]

Superlattices, random multilayers, composites, quantum dot SLs

$Si-Si_{1-x}Ge_x$ superlattices

10 nm

<u>50 nm</u>

1<u>0 n</u>m

0.2 nm Ge + 3.3 nm Si 171×, ≈ 600 nm 1.6 nm Ge + 12 nm Si 39×, ≈ 600 nm

2 nm Ge + 1.5 nm Si 171×, ≈ 600 nm

1.7 %

3.5 %

17 %

Thermal conductivity of superlattices

In-plane (κ_{\parallel}) and cross-plane (κ_{\perp}) thermal conductivities for superlattices with different Ge contents and periods

Random multilayers

1.2 nm Ge + 12 nm Si 1.2 nm Ge + 12 nm Si 1.8 nm Ge + 12 nm Si 0.9 nm Ge + 12 nm Si 1.6 nm Ge + 12 nm Si $6 \times , \approx 600$ nm

0.6 nm Ge + 4.1 nm Si 0.3 nm Ge + 5.1 nm Si 0.8 nm Ge + 4.8 nm Si 0.6 nm Ge + 5.7 nm Si 0.6 nm Ge + 3.8 nm Si $34x_{,} \approx 940$ nm

Average Ge content

2.9 %

3.3 %

3ω results of random multilayers

Thermal conductivities in a random multilayer (2.9 % Ge) in comparison to a superlattice (3.5 % Ge)

Nanoparticles in thin-film oxide

Fabrication of thin film 0–3 composites

- ◆ Solid-state reaction 3 SiO₂ + 4 Al → 3 Si + 2 Al₂O₃
- ◆ PECVD deposition of SiO_x and subsequent crystallization to form Si nanodots at the percolation limit; 2 SiO_x → (2 x) Si + x SiO₂

Oxide-embedded Si nanodots

The degree of crystallization f_c depends on the oxygen content x in the SiO_x film. [Roczen *et al* J Non-Cryst Sol 2011]

 $2 \operatorname{SiO}_x \rightarrow (2 - x) \operatorname{Si} + x \operatorname{SiO}_2$

SiO_{1.3}

Layer structure of nc-Si in SiO₂

Synthesis of Si particles in Al₂O₃

Process parameters

- Initial thicknesses d_{A1}, d_{SiO2}, temperature (500...600 °C), annealing time (1...3 h)
- Reaction rate \approx 3 nm/min at 550 °C
- Different substrates

500 nm

Electrical conductivity of Si–Al₂O₃ films

 $3 \operatorname{SiO}_2 + 4 \operatorname{Al} \rightarrow 3 \operatorname{Si} + 2 \operatorname{Al}_2 \operatorname{O}_3$

Electrical conductivity σ of the composite film for different substrates used

Seebeck measurements of Si–Al₂O₃ films

Seebeck coefficient S of the composite film for different substrates used

Power factor of Si-Al₂O₃ films

Power factor $S^2\sigma$ of the composite films

Comparison of thermal conductivities

Thermal conductivity κ of the composite film formed in thermally oxidized silicon

Comparison of Si–Al₂O₃ films

Summary

- Control of the phonon propagation
 Periodic → Aperiodic Si–SiGe multilayers
- Realization of the electron crystal-phonon glass concept Thermoelectric transport in oxide-embedded nanoparticles

Thermoelectric properties:

- $\sigma \approx 150$ S/cm, $S \approx 500 \mu$ V/K, $\kappa_{\perp} < 5$ W/(Km) for highly doped Si–Si_{1-x}Ge_x aperiodic multilayers
- $\sigma \approx 100$ S/cm, $S > 600 \mu$ V/K, $\kappa \approx 1$ W/(Km) for Si-based 0–3 composites

Figure of merit

ZT > 1 at 300 K for optimized Si-based thin films

Acknowledgments

Martin Schade, Andreas Kipke, Frank Syrowatka, Frank Heyroth, Georg Schmidt (CMAT Halle) Matthias Stordeur (HTC Halle)

BMBF WING project SiGe-TE 03X3541

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

© All rights reserved CMAT Halle 2014

- ◆ LD Hicks, MS Dresselhaus: Phys Rev B 47 (1993) 12727.
- ◆ GJ Snyder, ES Toberer: Nature Mater 7 (2008) 105.
- ✤ M Roczen *et al* J Non-Cryst Sol (2011) 10.1016/j.jnoncrysol.2011.11.024